
C Structures

The structure in C is a user-defined data type that can be used to group items of

possibly different types into a single type. The struct keyword is used to define the

structure in the C programming language. The items in the structure are called

its member and they can be of any valid data type.

C Structure Declaration
We have to declare structure in C before using it in our program. In structure

declaration, we specify its member variables along with their datatype. We can use the

struct keyword to declare the structure in C using the following syntax:

Syntax

struct structure_name {
 data_type member_name1;
 data_type member_name1;

};
The above syntax is also called a structure template or structure prototype and no

memory is allocated to the structure in the declaration.

C Structure Definition
To use structure in our program, we have to define its instance. We can do that by

creating variables of the structure type. We can define structure variables using two

methods:

1. Structure Variable Declaration with Structure Template

struct structure_name {
 data_type member_name1;
 data_type member_name1;

}variable1, varaible2, ...;

2. Structure Variable Declaration after Structure Template

// structure declared beforehand

struct structure_name variable1, variable2,;

Access Structure Members
We can access structure members by using the (.) dot operator.

Syntax

structure_name.member1;

strcuture_name.member2;

In the case where we have a pointer to the structure, we can also use the arrow

operator to access the members.

Initialize Structure Members
Structure members cannot be initialized with the declaration. For example, the

following C program fails in the compilation.
struct Point

{

 int x = 0; // COMPILER ERROR: cannot initialize members here

 int y = 0; // COMPILER ERROR: cannot initialize members here

};

The reason for the above error is simple. When a datatype is declared, no memory is

allocated for it. Memory is allocated only when variables are created.

We can initialize structure members in 3 ways which are as follows:

1. Using Assignment Operator.

https://www.geeksforgeeks.org/dot-operator-in-c/

2. Using Initializer List.

3. Using Designated Initializer List.

1. Initialization using Assignment Operator

struct structure_name str;
str.member1 = value1;
str.member2 = value2;
str.member3 = value3;
.
.
.

2. Initialization using Initializer List

struct structure_name str = { value1, value2, value3 };
In this type of initialization, the values are assigned in sequential order as they are

declared in the structure template.

3. Initialization using Designated Initializer List

Designated Initialization allows structure members to be initialized in any order. This

feature has been added in the C99 standard.
struct structure_name str = { .member1 = value1, .member2 = value2,
.member3 = value3 };

The Designated Initialization is only supported in C but not in C++.

Example of Structure in C
The following C program shows how to use structures

 C

// C program to illustrate the use of structures

#include <stdio.h>

 // declaring structure with name str1

struct str1 {

 int i;

https://www.geeksforgeeks.org/c-programming-language-standard/

 char c;

 float f;

 char s[30];

};

// declaring structure with name str2

struct str2 {

 int ii;

 char cc;

 float ff;

} var; // variable declaration with structure template

 // Driver code

int main()

{

 // variable declaration after structure template

 // initialization with initializer list and designated

 // initializer list

 struct str1 var1 = { 1, 'A', 1.00, "GeeksforGeeks" },

 var2;

 struct str2 var3 = { .ff = 5.00, .ii = 5, .cc = 'a' };

 // copying structure using assignment operator

 var2 = var1;

 printf("Struct 1:\n\ti = %d, c = %c, f = %f, s = %s\n",

 var1.i, var1.c, var1.f, var1.s);

 printf("Struct 2:\n\ti = %d, c = %c, f = %f, s = %s\n",

 var2.i, var2.c, var2.f, var2.s);

 printf("Struct 3\n\ti = %d, c = %c, f = %f\n", var3.ii,

 var3.cc, var3.ff);

 return 0;

}

Output

Struct 1:

 i = 1, c = A, f = 1.000000, s = GeeksforGeeks

Struct 2:

 i = 1, c = A, f = 1.000000, s = GeeksforGeeks

Struct 3

 i = 5, c = a, f = 5.000000

typedef for Structures

The typedef keyword is used to define an alias for the already existing datatype. In

structures, we have to use the struct keyword along with the structure name to define

the variables. Sometimes, this increases the length and complexity of the code. We

can use the typedef to define some new shorter name for the structure.

https://www.geeksforgeeks.org/typedef-in-c/

Example

// C Program to illustrate the use of typedef with

// structures

#include <stdio.h>

 // defining structure

struct str1 {

 int a;

};

 // defining new name for str1

typedef struct str1 str1;

 // another way of using typedef with structures

typedef struct str2 {

 int x;

} str2;

int main()

{

 // creating structure variables using new names

 str1 var1 = { 20 };

 str2 var2 = { 314 };

 printf("var1.a = %d\n", var1.a);

 printf("var2.x = %d", var2.x);

 return 0;

}

Output

var1.a = 20

var2.x = 314

One thing to note here is that the declaration of the structure should always be present

before its definition as a structure member. For example, the declaration below is

invalid as the struct mem is not defined when it is declared inside the parent structure.
struct parent {

 struct mem a;

};

struct mem {

 int var;

};

Uses of Structure in C
C structures are used for the following:

1. The structure can be used to define the custom data types that can be used to create

some complex data types such as dates, time, complex numbers, etc. which are not

present in the language.

2. It can also be used in data organization where a large amount of data can be stored

in different fields.

3. Structures are used to create data structures such as trees, linked lists, etc.

4. They can also be used for returning multiple values from a function.

Limitations of C Structures
In C language, structures provide a method for packing together data of different

types. A Structure is a helpful tool to handle a group of logically related data items.

However, C structures also have some limitations.

 Higher Memory Consumption: It is due to structure padding.

 No Data Hiding: C Structures do not permit data hiding. Structure members can

be accessed by any function, anywhere in the scope of the structure.

 Functions inside Structure: C structures do not permit functions inside the

structure so we cannot provide the associated functions.

 Static Members: C Structure cannot have static members inside its body.

 Construction creation in Structure: Structures in C cannot have a constructor

inside Structures.

	C Structures
	C Structure Declaration
	Syntax

	C Structure Definition
	1. Structure Variable Declaration with Structure Template
	2. Structure Variable Declaration after Structure Template

	Access Structure Members
	Syntax

	Initialize Structure Members
	1. Initialization using Assignment Operator
	2. Initialization using Initializer List
	3. Initialization using Designated Initializer List

	Example of Structure in C
	typedef for Structures
	Example

	Uses of Structure in C
	Limitations of C Structures

